20,731 research outputs found

    Strategies for replacing saturated fat in meat products: A review

    Get PDF
    This paper aims to provide a better understanding of how to replace saturated fat in meat products due to concerns about its high amounts as health consciousness improves and consumers look for changes. In particular, we focused on various approaches and technologies to replace saturated fat in meat products. A systematic literature review was conducted using Web of Science, Google Scholar, and Scopus based on existing papers. The use of vegetable oils in meat products, oleogel and emulsion gel technologies, as well as application of protein substitutes were reviewed. The results show that the mentioned methods are potentially effective techniques for reducing the saturated fat content of meat products. As research on new approaches to fat substitutes continues to attract interest, we would like to highlight the research needs for the development of healthy meat products in the long term.This paper aims to provide a better understanding of how to replace saturated fat in meat products due to concerns about its high amounts as health consciousness improves and consumers look for changes. In particular, we focused on various approaches and technologies to replace saturated fat in meat products. A systematic literature review was conducted using Web of Science, Google Scholar, and Scopus based on existing papers. The use of vegetable oils in meat products, oleogel and emulsion gel technologies, as well as application of protein substitutes were reviewed. The results show that the mentioned methods are potentially effective techniques for reducing the saturated fat content of meat products. As research on new approaches to fat substitutes continues to attract interest, we would like to highlight the research needs for the development of healthy meat products in the long term

    Origins of choice-related activity in mouse somatosensory cortex.

    Get PDF
    During perceptual decisions about faint or ambiguous sensory stimuli, even identical stimuli can produce different choices. Spike trains from sensory cortex neurons can predict trial-to-trial variability in choice. Choice-related spiking is widely studied as a way to link cortical activity to perception, but its origins remain unclear. Using imaging and electrophysiology, we found that mouse primary somatosensory cortex neurons showed robust choice-related activity during a tactile detection task. Spike trains from primary mechanoreceptive neurons did not predict choices about identical stimuli. Spike trains from thalamic relay neurons showed highly transient, weak choice-related activity. Intracellular recordings in cortex revealed a prolonged choice-related depolarization in most neurons that was not accounted for by feed-forward thalamic input. Top-down axons projecting from secondary to primary somatosensory cortex signaled choice. An intracellular measure of stimulus sensitivity determined which neurons converted choice-related depolarization into spiking. Our results reveal how choice-related spiking emerges across neural circuits and within single neurons

    Non-Classical Response from Quench-Cooled Solid Helium Confined in Porous Gold

    Full text link
    We have investigated the non-classical response of solid 4He confined in porous gold set to torsional oscillation. When solid helium is grown rapidly, nearly 7% of the solid helium appears to be decoupled from the oscillation below about 200 mK. Dissipation appears at temperatures where the decoupling shows maximum variation. In contrast, the decoupling is substantially reduced in slowly grown solid helium. The dynamic response of solid helium was also studied by imposing a sudden increase in the amplitude of oscillation. Extended relaxation in the resonant period shift, suggesting the emergence of the pinning of low energy excitations, was observed below the onset temperature of the non-classical response. The motion of a dislocation or a glassy solid is restricted in the entangled narrow pores and is not likely responsible for the period shift and long relaxation

    Microalgae as alternative proteins for the sustainable food industry: A review

    Get PDF
    This paper reviews the nutritional properties and consumer perceptions of microalgae foods through various recent studies on alternative protein sources. Food choices, including meat consumption, are a common concern for humanity. Thus, we focused on whether microalgae foods have a sufficient value as a protein source and what nutritional benefits they have. Based on existing papers, we conducted a systematic review using Web of Science, Google Scholar, and Scopus to comprehensively investigate and summarize the nutritional characteristics of microalgae, sustainable diets, and awareness of microalgae as an alternative protein source. Research has shown that microalgae have been consumed by humans as a protein source since ancient times, and contain enough protein to be used as an alternative protein source. They also have many other nutritional benefits, such as vitamins. We have found that consumers are increasingly interested in alternative protein sources, and the more they learn about microalgae, the more accepting they become. These results may suggest a need for further research to improve microalgae as an alternative protein source in the long run and develop them into a variety of foods

    SPH Simulations of Galactic Gaseous Disk with Bar: Distribution and Kinematic Structure of Molecular Clouds toward the Galactic Center

    Get PDF
    We have performed Smoothed Particle Hydrodynamic (SPH) simulations to study the response of molecular clouds in the Galactic disk to a rotating bar and their subsequent evolution in the Galactic Center (GC) region. The Galactic potential in our models is contributed by three axisymmetric components (massive halo, exponential disk, compact bulge) and a non-axisymmetric bar. These components are assumed to be invariant in time in the frame corotating with the bar. Some noticeable features such as an elliptical outer ring, spiral arms, a gas-depletion region, and a central concentration have been developed due to the influence of the bar. The rotating bar induces non-circular motions of the SPH particles, but hydrodynamic collisions tend to suppress the random components of the velocity. The velocity field of the SPH particles is consistent with the kinematics of molecular clouds observed in HCN (1-0) transition; these clouds are thought to be very dense clouds. However, the l-v diagram of the clouds traced by CO is quite different from that of our SPH simulation, being more similar to that obtained from simulations using collisionless particles. The lvl-v diagram of a mixture of collisional and collisionless particles gives better reproduction of the kinematic structures of the GC clouds observed in the CO line. The fact that the kinematics of HCN clouds can be reproduced by the SPH particles suggests that the dense clouds in the GC are formed via cloud collisions induced by rotating bar.Comment: 31 pages, 10 pigures, accepted for publication in Ap

    Charge and Orbital Ordering and Spin State Transition Driven by Structural Distortion in YBaCo_2O_5

    Full text link
    We have investigated electronic structures of antiferromagnetic YBaCo_2O_5 using the local spin-density approximation (LSDA) + U method. The charge and orbital ordered insulating ground state is correctly obtained with the strong on-site Coulomb interaction. Co^{2+} and Co^{3+} ions are found to be in the high spin (HS) and intermediate spin (IS) state, respectively. It is considered that the tetragonal to orthorhombic structural transition is responsible for the ordering phenomena and the spin states of Co ions. The large contribution of the orbital moment to the total magnetic moment indicates that the spin-orbit coupling is also important in YBaCo_2O_5.Comment: 4 pages including 4 figures, Submitted to Phys. Rev. Let

    Orientational Melting in Carbon Nanotube Ropes

    Full text link
    Using Monte Carlo simulations, we investigate the possibility of an orientational melting transition within a "rope" of (10,10) carbon nanotubes. When twisting nanotubes bundle up during the synthesis, orientational dislocations or twistons arise from the competition between the anisotropic inter-tube interactions, which tend to align neighboring tubes, and the torsion rigidity that tends to keep individual tubes straight. We map the energetics of a rope containing twistons onto a lattice gas model and find that the onset of a free "diffusion" of twistons, corresponding to orientational melting, occurs at T_OM > 160 K.Comment: 4 page LaTeX file with 3 figures (10 PostScript files

    Effects of pressure on the ferromagnetic state of the CDW compound SmNiC2

    Full text link
    We report the pressure response of charge-density-wave (CDW) and ferromagnetic (FM) phases of the rare-earth intermetallic SmNiC2 up to 5.5 GPa. The CDW transition temperature (T_{CDW}), which is reflected as a sharp inflection in the electrical resistivity, is almost independent of pressure up to 2.18 GPa but is strongly enhanced at higher pressures, increasing from 155.7 K at 2.2 GPa to 279.3 K at 5.5 GPa. Commensurate with the sharp increase in T_{CDW}, the first-order FM phase transition, which decreases with applied pressure, bifurcates into the upper (T_{M1}) and lower (T_c) phase transitions and the lower transition changes its nature to second order above 2.18 GPa. Enhancement both in the residual resistivity and the Fermi-liquid T^2 coefficient A near 3.8 GPa suggests abundant magnetic quantum fluctuations that arise from the possible presence of a FM quantum critical point.Comment: 5 pages, 5 figure
    corecore